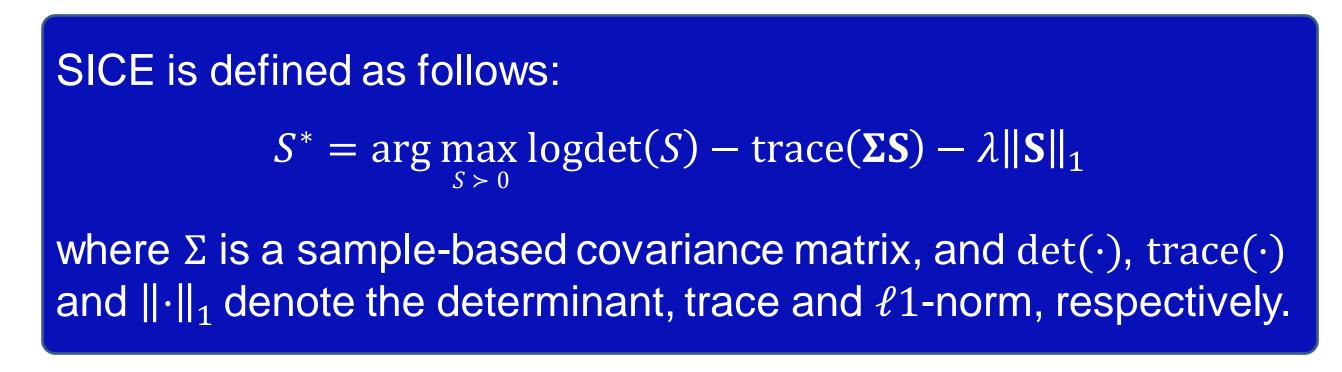


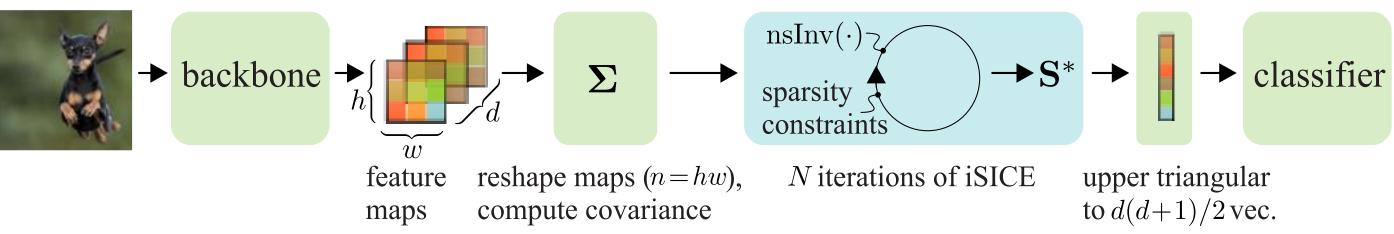
Key highlights:


Pairwise correlation computed from CNN channels becomes "contaminated" once there is another channel correlating with both channels of interest, resulting in the "confounding" effect.

Partial correlation removes the confounding effect. Sparse inverse covariance estimation (SICE) also removes confounding effect and is more robust to estimation given limited data.

SICE estimation with CNN:

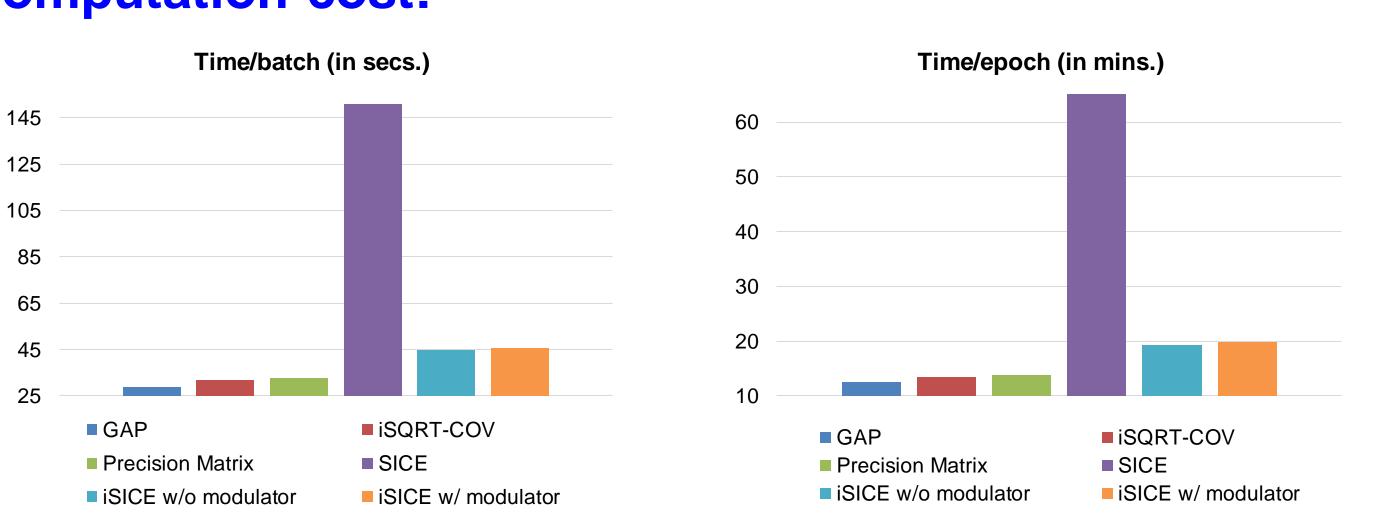
Partial correlation estimation from low spatial resolution and large number of CNN feature channels is challenging.


- \succ The is no suitable solver available for running SICE in CNN.
 - Convex solvers such as CVXPY and GLASSO do not support backprop.
 - CVXPYLayers is inefficient in handling large SICE problems.
- We propose an effective method for SICE based on NS iterations.

Learning Partial Correlation based Deep Visual Representation for Image Classification

Saimunur Rahman^{1,2}, Piotr Koniusz^{1,3}, Lei Wang², Luping Zhou⁴, Peyman Moghadam^{1,5}, Changming Sun¹ ¹CSIRO Data61, ²University of Wollongong, ³Australian National University, ⁴University of Sydney, ⁵Queensland University of Technology

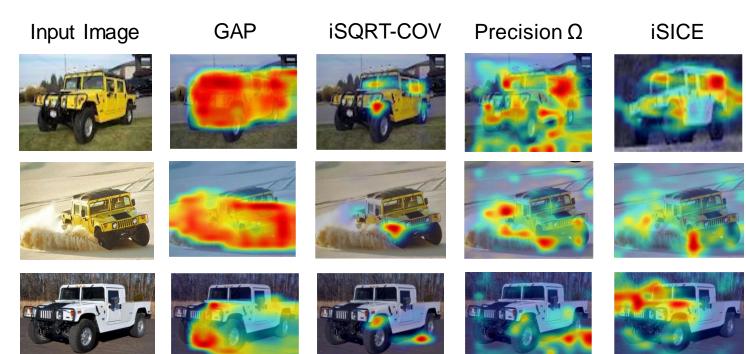
Proposed iterative SICE (iSICE):


Proposed iSICE integration with CNN:

iSICE vs. its covariance counterparts:

Method	Matrix Dim	MIT		Airplane		Birds		Cars		Average	
		VGG	ResNet	VGG	ResNet	VGG	ResNet	VGG	ResNet	VGG	ResNet
iSQRT-COV	256×256	76.1	78.8	90.0	90.9	84.5	84.3	91.2	92.1	85.5	86.5
ISQKI-COV	512×512	76.9	82.8	91.5	91.1	85.0	84.5	92.2	92.1	86.4	87.6
Precision $\mathbf{\Omega}$	256×256	80.2	80.8	89.4	91.2	83.4	84.7	92.0	92.0	86.3	87.1
FIECISIOII 32	512×512	80.7	82.7	90.1	91.5	84.9	84.0	92.5	92.6	87.0	87.7
SICE	128×128	71.0	73.1	85.5	86.9	77.3	78.0	87.0	87.9	80.2	81.5
SICE	256×256	73.7	75.4	87.9	89.2	79.7	80.3	89.5	89.3	82.7	83.6
iSICE	256×256	78.7	80.5	92.2	92.7	86.5	85.9	94.0	93.5	87.9	88.2
	512×512	81.1	81.7	92.9	92.6	86.8	86.0	94.6	93.8	88.9	88.5

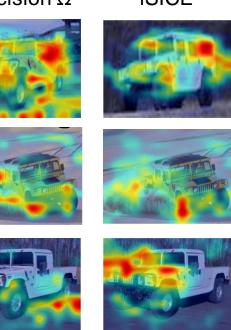
Computation cost:


$$\frac{\partial J}{\partial \mathbf{S}} = \frac{\partial}{\partial \mathbf{S}} \operatorname{logdet}(\mathbf{S}) - \frac{\partial}{\partial \mathbf{S}} \operatorname{trace}(\mathbf{\Sigma}\mathbf{S}) - \lambda \frac{\partial}{\partial \mathbf{S}} \|\mathbf{S}\|_{1}$$
$$= \mathbf{S}^{-1} - \mathbf{\Sigma} - \lambda \left(\frac{\partial}{\partial \mathbf{S}} \mathbf{S}^{+} - \frac{\partial}{\partial \mathbf{S}} \mathbf{S}^{-}\right)$$

 $= \mathbf{S}^{-1} - \mathbf{\Sigma} - \lambda(\operatorname{sign}(\mathbf{S}^+) - \operatorname{sign}(\mathbf{S}^-))$

Comparison with state-of-the-art:

Method	Backbone	MIT	Airplane	Birds	Cars	DTD	iNatuarlist	mini-ImageNet
GAP [37]		_	76.6	70.4	79.8	_	_	_
NetVLAD [2]		_	81.8	81.6	88.6	_	_	_
NetFV [28]		_	79.0	79.9	86.2	_	_	_
BCNN [27]		77.6	83.9	84.0	90.6	70.6	_	_
CBP [11]		76.2	84.1	84.3	91.2	67.7	_	_
LRBP [17]		_	87.3	84.2	90.9	_	_	_
KP [6]		—	86.9	86.2	92.4	—	_	_
HIHCA [4]		—	88.3	85.3	91.7	_	_	_
Improved BCNN [25]		_	88.5	85.8	92.0	—	—	_
SMSO [46]	VGG-16	79.5	_	85.0	—	_	_	_
MPN-COV [43] (reproduced)		_	86.1	82.9	89.8	—	—	_
iSQRT-COV [23] (reproduced)		76.1	90.0	84.5	91.2	71.3	56.2	76.2
DeepCOV [9]		79.2	88.7	85.4	91.7	_	_	_
DeepKSPD [9]		81.0	90.0	84.8	91.6	_	_	_
RUN [47]		80.5	91.0	85.7	_	_	_	_
FCBN [48]		80.3	90.5	85.5	_	_	_	_
TKPF [49]		80.5	91.4	86.0	_	_	_	_
Precision $\boldsymbol{\Omega}$		80.2	89.4	83.4	92.0	74.0	57.9	81.0
iSICE (ours)		78.7	92.2	86.5	94.0	74.7	59.8	78.7
CBP [11]		_	81.6	81.6	88.6	_	_	_
KP [6]		—	85.7	84.7	91.1	—	—	_
SMSO [46]		79.7	—	85.8	—	_	—	_
iSQRT-COV [23] (reproduced)		78.8	90.9	84.3	92.1	73.0	57.7	70.7
DeepCOV-ResNet [34]	ResNet-50	83.4	83.9	86.0	85.0	_	_	_
TKPF [49]		84.1	92.1	85.7	—	—	—	_
Precision $\mathbf{\Omega}$		80.8	91.2	84.7	92.0	73.7	59.6	65.6
iSICE (ours)		80.5	92.7	85.9	93.5	75.7	60.7	72.0
iSQRT-COV [23]		76.3	90.3	84.1	91.4	71.8	56.9	75.4
Precision Ω	VGG-19	79.6	91.1	83.2	92.2	74.2	57.3	73.8
iSICE (ours)		80.6	92.5	86.6	93.9	74.9	59.6	77.1
iSQRT-COV [23]		79.3	91.0	84.4	92.3	73.0	70.6	73.9
Precision $\mathbf{\Omega}$	ResNet-101	77.9	90.1	83.3	91.4	71.2	69.8	73.0
iSICE (ours)		81.0	92.9	86.6	93.6	75.4	72.0	78.0
iSQRT-COV [23]		81.6	91.3	86.2	92.4	75.7	72.2	76.1
Precision $\boldsymbol{\Omega}$	ResNeXt-101	85.7	90.2	84.6	89.9	76.9	72.3	77.6
iSICE (ours)		86.3	94.6	87.2	94.5	78.7	73.8	81.0
iSQRT-COV [23]		77.8	88.1	83.5	89.4	84.7	61.5	82.0
Precision Ω	ConvNext-T	78.5	81.2	83.7	92.2	83.9	59.3	83.6
iSICE (ours)		85.4	90.4	86.7	93.1	88.9	65.0	85.1
iSQRT-COV [23]		82.1	87.6	85.1	89.7	86.1	58.1	67.7
Precision Ω	Swin-T	82.5	88.2	84.9	90.5	86.5	59.1	65.6
iSICE (ours)		85.9	89.6	86.5	91.3	88.3	61.9	69.1
iSQRT-COV [23]		86.6	91.3	88.0	92.0	79.4	69.7	64.9
Precision Ω	Swin-B	87.0	90.7	87.7	93.1	80.1	67.3	66.4
iSICE (ours)		87.6	92.9	88.3	93.3	79.8	72.4	68.4


Feature visualisation:

References:

- 3. Lin and Maji. "Improved bilinear pooling with CNNs." In BMVC 2017.

Paper website & code:

1. Zhang et al. "Beyond covariance: SICE and kernel based visual feature representation." In IJCV 129 (2021): 300-320. 2. Peihua, et al. "Towards faster training of GCP networks by iterative matrix square root normalization." In CVPR 2018.

4. Friedman et al. "Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441.